ICASE

THE PROVISION OF RECOVERABLE INTERFACES

T. Anderson
and

P. A. Lee

Report Number 79-9

April 16, 1979

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia

Operated by the

uNIVERSITIES sPacE (ISR RESEARCH ASSOCIATION

(NASA-CR-185758) THE PROVISION OF N89-71340
RECOVERABLE INTERFACES (ICASE) 16 p

unclas
00/61 0224317

The Provision of Recoverable Interfaces

T. Andersont
Institute gon Computen Applications in Science and Engineering

and

P. A. Lee

Computing Laboratory, The University,
Newcastle upon Tyne, U. K.

Abstract

The recovery block scheme has been proposed as one method of pro-
viding fault tolerant software, and is dependent on the availability of
recoverable interfaces so that any damage caused by an erroneous program
can be repaired by backward error recovery. However, it is clear that
the interface provided by the hardware in any practical system will
contain unrecoverable objects. This paper investigates a method of
structuring a system into multiple levels so that a level of software
can "hide" the unrecoverable features of an interface and provide a new
interface with recoverable objects to programs needing facilities for
backward error recovery. The paper discusses this organization of

recovery in such a system.

+ On leave from the Computing Laboratory, The University, Newcastle
upon Tyne, U. K.

The research for the first author was partially supported under
NASA Contracts NAS1-14101 and NAS1-14472 while he was in residence at
ICASE, NASA Langley Research Center, Hampton, VA 23665.

1. Introduction

In order to attain a high level of reliability the designer of a system will
attempt to ensure first that the system does not contain faults, and second
that those faults which it does contain (since the first objective will not be
achieved) are tolerated and do not cause the system to fail. An important
element in any measures for fault tolerance is a means of error recovery, that
is of transforming a state of the system which (due to some fault) is

erroneous to a state from which the system can continue to provide its
specified service. .

Many of the erroneous states which can occur in the operation of a system can
be anticipated. In consequence it may well be possible to construct specific
error recovery measures to rectify such errors. Indeed, most of the work on
tolerance for faults in the hardware of computer systems has catered only for
predicted error situations caused by (anticipated) component failures.
Techniques for coping with component failure can be embodied in the hardware
itself [Avi75], or in the software of a system in the form of exception
handling routines [Goo75]. However, faults in the design of a system can lead
to erroneous states which are unanticipated and cannot be predicted. of
course, faults in software are always due to deficiencies in design and in
consequence the techniques which have been quite effective in averting system
failures due to hardware faults are inadequate and inappropriate as a defence
against software faults.

Any technique for providing recovery in an unanticipated situation must be of
a very general nature and should not place undue reliance on an erroneous
state caused by a design fault. One such technique 1is to abandon the
erroneous state and restore the objects in the system to the values which
pertained in some prior state. This approach has been termed "backward error
recovery" [Ran78)] since an earlier state is restored and some system activity
is in consequence abandoned. Backward error recovery is an important
technique, for if it 1is employed in a system then recovery can be obtained
from the effects of a wide class of faults, including those of design.
Successful restoration of a prior state ensures the elimination of all errors
generated by any fault which occurred after that earlier state; thus a
powerful fault tolerance capability can be provided.

Consider, for example, the interface between the "hardware" and "software" of
a computer system. The hardware machine interprets the machine language
programs comprising the software of the system, and provides various abstract
objects such as registers, words of memory in main storage, pages of data on
disc, and I/0 devices. One of the aspects of providing fault tolerance at the
software 1level is to provide backward error recovery for the objects
manipulated by the programs. (Objects for which backward error recovery is
provided will be termed "recoverable" in this paper.) The recovery cache has
been proposed [Hor7U4] as a mechanism for providing, by hardware, recovery for
those objects that reside in the main store of the machine, and it has been
demonstrated that this is a feasible and efficient technique [And76, Shr78,
Lee79]. However, the optimised checkpointing strategy employed by the
recovery cache is less appropriate for the provision of backward error
recovery for most of the other objects supported by the hardware interpreter,
particularly for those objects which interact with the external environment of
the system. : ‘

This paper describes an approach to the construction of complex systems which
involves structuring a system into a hierarchy of interfaces or levels such
that a higher 1level can provide recoverable abstract objects which it

implements from the (relatively) concrete objects available from a lower
level. Examples of systems in which a hierarchical multi-level approach has
been adopted have been described in the literature [Dij68,Lis72]; a detailed
examination of a model of recovery in multi-level systems has also been
published [And78]. This paper considers the way in which a multi-level
recoverable system could be designed and illustrates the approach by means of
a simple example. Some useful observations on the practical details of the
approach are made.

2. Basic Recovery Concepts

First, consider the simple case of a program running on a given interface L.
The term precoverability is, as indicated above, taken to mean the ability to
recover an earlier state of the objects available on an interface, thereby
undoing the effects of operations that were performed on those objects. To
provide such backward error recovery necessitates the recording of precovery
data which can be used for this state restoration. Correspondingly, programs
which manipulate the recovery data are referred to as recovery programs.

In the rest of this paper it will be assumed that the following basic recovery
features are available to programs executed on an interface:

(L) The interface provides both recoverable and unrecoverable objects.

(ii) A program can establish recovery points which ensure that the current
state of the recoverable objects of the interface is (at least conceptually)
recorded as recovery data.

(iii) Recovery points can be discarded with the effect that recovery data
maintained for recovery to those recovery points is discarded.

A recovery point is said to be active from when it is established until it is
discarded. The term recovery region will be used to refer to the period for
which a recovery point is active (figure 1 shows two nested recovery regions).

3. Multi-Level Systems

A systematic method of designing a complex computer system is to adopt a
hierarchical approach: starting from a given hardware interface LO, a first
layer of software is added to obtain a more attractive interface L1; this
process 1is repeated to obtain L2, and so on. The resulting system is termed

multi-level in that a number of interfaces, or levels, can be discerned in its
implementation,

The most powerful and general method of providing a new interface 1is to use
interpretation techniques. For example, a new level L1 can be constructed
from an existing hardware interface LO by providing a software-implemented

interpreter I1 (which is, of course, executed on LO). This is depicted in
figure 2.

The characteristic feature of this approach is that an interpreter has
complete responsibility for the support of the new interface - every operation
performed by a program I2 on objects available on L1 in figure 2 is directly
supported by I1. The design of a multi-level system can be simplified by the
adoption of interpretation techniques because the implementation of each of
the levels supported by interpretation is completely independent of the
implementation of the wunderlying 1levels, For example, in figure 2 the
recoverability of the objects available on LO has no direct bearing on the

recoverability of objects available on L1. Any recovery features available on
L1 have to be explicitly provided by I1.

The major practical disadvantage with interpretation 1is in the substantial
overhead which it incurs. Indeed, if it is desired that a new interface L1 is
to have many features in common with the underlying interface LO then
interpretation can be a costly technique to utilise. There is an alternative
to full interpretation: if the hardware machine makes available sufficiently
powerful extension facilities then it may not be necessary to support new
interfaces by further levels of interpretation; instead, these may be provided
by extending the hardware provided features. Figure 3 illustrates a computer
system in which the hardware-provided interface LO (itself supported by a
hardware-implemented interpreter 10) provides extension facilities. Each new
interface Li (i = 1,2) is constructed as an extension of Li-1, the extension

being implemented by means of a program Ei which is executed on the interface
Li-1.

Each program Ei is referred to as an interpreter extension. Every interaction
with the interface L2 is first examined by the underlying interpreter 10,
which determines whether that interaction is directly supported by IO itself
or, if not, which of the interpreter extensions (E1,E2) does support that
interaction. Thus, the interactions of a program may be supported by any
lower extensions or by I0. The layout of figure 3 is intended to indicate
that interfaces L0, L1 and L2 have many behavioural properties in common.

Example:
The nucleus of most operating systems can be regarded as an interpreter
extension which provides a user interface from the underlying hardware
interface by removing certain privileged instructions and adding a set of
'operating system call' instructions. ’

The potential advantage to be gained from using an interpreter extension to
implement a new interface (when this is possible) in preference to a further
level of interpretation is in avoiding the overhead that the latter entails.
It should be noted that to a program being executed on an interface, it is

completely immaterial whether that interface is implemented by an interpreter
extension or not.

As discussed above, the advantages of full interpretation in the
implementation of multi-level systems may be diminished by the overheads
incurred, and it is likely that many practical multi-level systems will be
constructed wusing interpreter extensions. Thus the rest of this paper
concentrates on the provision of recoverable interfaces by means of a
hierarchy of interpreter extensions. In order to illustrate the discussion a
simple example multi-level system will be presented.

4., A Simple File System

The example system in which the provision of recoverable interfaces is to be
considered is a rudimentary filing system; it supports only a single file for
use by a single user. The implementation of the system is as depicted in
figure 3, and has the following characteristics.

LO: Among the objects available on LO are variables held in main memory, and
disc pages held on secondary storage. The disc is accessed by means of the
operations 'readdisc' and 'writedisc'. These objects and the operations to
manipulate them are supported by the underlying interpreter I0.

L1: The interpreter extension E1 extends LO by providing operations to
acquire and release disc pages (operations 'getdiscpage’ and
'releasediscpage'), maintaining a list of the free disc pages in main memory.

L2: The second interpreter extension E2 prevents the wuser program P from
directly accessing the disc pages. Instead, P is given access to a file; the
" user views this file as an indexed sequence of lines of text, with operations
'openfile', 'closefile', treadline! and 'writeline'. The concrete
representation maintained by E2 for the file consists of a set of the
unrecoverable disc pages, a copy (called 'pagebuffer') of the most recently
accessed disc page, and an array of disc page addresses (called 'filemap').
The objects pagebuffer and filemap are held in main memory. Each entry in
filemap points to one of the disc pages currently representing the file. When
P accesses the file, either to read or write a line, the access is actually
applied (by E2) to pagebuffer. If the line in question is not present, because
pagebuffer is empty or contains the wrong disc page, then the relevant disc
page is copied into pagebuffer (if pagebuffer contains an updated disc page
then this must first be copied back to the disec).

5. Provision of Recovery

If backward error recovery is to be provided to a program in a system with
interpreter extensions, then whenever the program manipulates a recoverable
object within a recovery region, it must be ensured that the necessary
recovery data 1is recorded. If the recoverable object is supported by the
underlying interpreter then the recovery data will be maintained by the
interpreter. Similarly, an interpreter extension may need to record recovery
data so that it can provide recovery to any recoverable objects it supports.

It will be assumed that the underlying interpreter I0 of the file system
example provides recovery for variables in main memory, but not for disc pages
(that 1is, words of main memory are recoverable and disc pages are
unrecoverable). Although the first extension (E1) provides no recovery
features, the second extension (E2) is intended to provide a recoverable file;
since the file is implemented on disc as well as in main storage, E2 will have
to include recovery programs and data, as is depicted in figure 4.

In order that an extension, such as E2 in figure 4, can perform the necessary
actions for recovery, the underlying interpreter must invoke the extension
whenever a program using that extension establishes or discards a recovery
point as well as whenever recovery is required. When recovery is required for
P (the user of the file system) then the extension E2 must restore the prior
state of the file and the interpreter I0 must restore those variables of P
which are held in main memory.

The basis of one method by which E2 could provide recovery for the file is as
follows: whenever P establishes a recovery point, E2 must ensure that the disc
pages which represent the file are not subsequently overwritten. When
pagebuffer is to be copied back to the disc, instead of overwriting the
original disc page, an unused disc page is acquired and pagebuffer is written
to this new page. Clearly, the appropriate entry in filemap must be changed
to point to the new disc page, and in consequence the disc address of the old
disc page must be recorded as recovery data by E2.

An interpreter extension can itself make use of recoverable objects, either in
conjunction with 1its own use of recovery points or simply for convenience in
representing objects maintained by the extension.

In the file system, the objects filemap and pagebuffer used by E2 are
recoverable since they reside in main storage. The question which will now be
considered is whether recoverable objects used by an interpreter extension
should be restored by the underlying interpreter when recovery is provided to
a program which has called the extension. For example, should recovery of P
cause the objects filemap and pagebuffer to be restored by I0?

6. Disjoint and Inclusive Bgcovg;i

The distinction between the two recovery schemes discussed below stems from
the way in which an interpreter extension is regarded as fitting into the
structure of the system. As its name suggests, an interpreter extension is an
extension of an underlying interpreter and could therefore be regarded as
being a part of that interpreter (at least conceptually), and hence
independent (or disjoint) from any calling program. If the extension and
calling program are regarded as disjoint components of the system it seems
legitimate that recovery for one should not imply that any recovery is
required for the other. In consequence an extension would be wholly
responsible for the recovery of objects it was maintaining. A scheme of
recovery for multi-level systems having these characteristics is termed a
disjoint recovery scheme.

If disjoint recovery is adopted for the file system then the objects filemap
and pagebuffer would not be restored to their prior states by I0 when recovery
is provided to P. E2 must still be able to restore the prior state of the
file - but this is easily achieved. The recovery data recorded by E2 simply
needs to indicate which filemap entries must be restored and the disc
addresses to which they should be reset (that is, the address of the old disc

pages discussed in the previous section). Using this information, E2 can
reset filemap to its state at the time the recovéry point was established and
can also release the new disc pages that had been acquired. Note that

pagebuffer need not be restored. The recovery program of E2 merely empties
pagebuffer since any subsequent access of the file by P will result in a disc
page being copied into pagebuffer. All of these actions ensure that the file
is restored to the abstract state which existed when P established the
recovery point. This example also illustrates that provision of the
abstraction of recovery for an object does not imply that an exact prior state
of that object must be restored; there may be many concrete states which have
the same abstract state. The disjoint recovery scheme can take advantage of
this, as illustrated here, when providing recovery. (A more detailed
elaboration of the file system program of E2 with disjoint recovery is
supplied in the Appendix.)

There is a second way in which an extension may be regarded as fitting into
the structure of the system. Instead of taking an extension to be disjoint
from a calling program an alternative is to regard the calling program as
being inclusive of the extension, the extension then being regarded as a
nested component of the calling program. It then seems natural that recovery
of the calling program should also include recovery of the extension. 1In
consequence an extension would only need to record and maintain recovery data
relating to the use of any unrecoverable objects it manipulates on behalf of a
calling program; recovery of any recoverable objects used by the extension
would be automatically provided by lower extensions or by the underlying
interpreter. A scheme of recovery - for multi-level systems having these
characteristics is termed an inclusive recovery scheme.

If inclusive recovery is adopted for the file system then when recovery is
invoked for P, the prior states of filemap and pagebuffer will be

automatically restored by I0. As with the disjoint scheme, E2 must acquire
new disc pages to avoid overwriting the disc pages which represented the file
at the time the recovery point was established. Automatic restoration of
filemap thus ensures that the file is restored to its prior state, and the
recovery program of E2 merely has to release the newly acquired disc pages,
the addresses of which would have been recorded as recovery data (see the
Appendix for a more detailed description).

One complication which arises with inclusive recovery concerns the recovery
data maintained by the extension (such as the addresses of newly acquired disc
pages in the file system). If this data is retained in recoverable objects
(perhaps to enhance the recovery capabilities of the extension itself) then
this information would be lost if the objects were restored by the underlying
interpreter before the recovery program of the extension was executed. This
difficulty can be avoided in a number of ways. The simplest, but least
acceptable, approach is to stipulate that the recovery data of an extension
must be maintained in unrecoverable objects; unfortunately the recovery
programs of the extension are then unable to derive any local benefit from the
recovery capability of the underlying interpreter. The most general solution
is to allow an extension to specify that the provisions of disjoint recovery
should be applied to the objects it uses to hold recovery data. The code
presented in the Appendix assumes that this strategy is being employed.
Alternatively, it may be possible to ensure that the recovery programs of an
extension are executed before recovery is provided by the underlying
interpreter. 1In a multi-level system this implies that when recovery is
required for a program, the underlying interpreter must invoke the recovery
programs of all relevant extensions in order from right to left, that is from
"most™ to '"least" abstract. (The adoption of this strategy would also allow
minor pptimisations of the code presented in the Appendix to be made.)

T. General Comments on the Recovery Schemes in the Example

At a superficial level, there would appear to be only minor differences
between the implementation of recovery in the example system utilising
disjoint or inclusive recovery. Certainly, it would be wrong to try to draw
firm conclusions about the usefulness of either scheme based on this simple
example., It is claimed that both schemes provide exactly the same abstraction
of recovery to the user of the file (P) and, as expected, it is necessary to

investigate the implementation of this abstraction in E2 to distinguish the
schemes.

As far as recovery is concerned, the implementation of the disjoint scheme
naturally has to do more work than that of the inclusive scheme. However, in
this example the extra work turns out to be relatively minor because, since
the disjoint scheme gives full control over recovery, it is possible to adopt
a reasonably efficient method of restoring a concrete state of the file in
order to provide the abstraction of recovery. Thus, for example, pagebuffer
does not need to be restored to the state that pertained when P established a
recovery point. In contrast, with the inclusive scheme, pagebuffer is
restored automatically without cost (strictly, at the cost of recovery data in
the 1lower machine). The disjoint scheme does incur the cost of the disc
access to reset pagebuffer when the file is next accessed by P. It should
also be noted that if the 'getdiscpage' and 'releasediscpage' procedures of E1
were made recoverable by E1 then there would be no need whatsoever for a
recovery program in E2 with the inclusive recovery scheme. However, the
recoverability provided by E1 would have no impact on the recovery program of
E2 in the disjoint scheme.

On the other hand, the disjoint scheme has to checkpoint information
maintained in main memory about the file status when a recovery point is
established. 1In the current example there is minimal information; a more
practical file system which maintained other state information (time, data
altered, owner, size, ...) would necessitate the recording of additional
information as recovery data of the disjoint scheme.

The example also highlights the problems of recording recovery data in
recoverable objects with the inclusive recovery scheme. Anderson, Lee and
Shrivastava [And78] stated that the natural order for recovery of the
extensions is from 1least to most abstract. However, it has been shown that
providing recovery in the reverse order would provide the desired effect and
would simplify the system in that the objects used to hold recovery data would
not need to be specially identified and dealt with. Indeed, the recording of
recovery data may be simplified by the adoption of this strategy.

It is likely that extensions themselves contain faults., It should be noted
that neither recovery scheme precludes an extension from establishing its own
local recovery points as part of its fault tolerance strategies. Indeed, this
may be considered necessary to provide reliable extension operation, although
the simple example presented here contains no such strategies.

8. Summary

By discussing the details of the provision of backward error recovery in a
very simple file system, the salient characteristics of two schemes of
recovery in multi-level systems have been presented. The disjoint scheme
gives complete control over recovery to an extension but only at the price of
having to re-implement recovery when that provided by the underlying
interpreter c¢ould have been adequate. The " inclusive scheme enables an
extension to take advantage of the recovery provided by the wunderlying
interpreter in providing its own recovery capability, but is complicated by
the need to obtain disjoint recovery for its recovery data. A practical
solution to this problem has been discussed. The example system also
illustrates how unrecoverable features of a 1low level interface can be
eliminated by replacing them with recoverable abstract objects in a new
interface. A reasonably detailed elaboration of the file system program of E2
is attached as an Appendix.

().} m

We would like to thank our fellow members of the Reliability Project, which is
sponsored by the Science Research Council of Great Britain, at the University
of Newcastle upon Tyne.

References

[And76]

T. Anderson and R. Kerr, "Recovery blocks in action". Proc. 2nd 1Int.
Conf. on Software Engineering, San Francisco, Oct. 1976, pp.uUl47-457.

[And78] T. Anderson, P.A. Lee and S.K. Shrivastava, "A model of recoverability

[AviT5]

[Dij68]

[GooT75]

[Hor74]

[Lee79]

[LisT2]

[Shr78]

in multilevel systems". IEEE Trans. on Software Eng., Vol. SE-4, Nov.
1978, pp. L486-494,

A. Avizienis, "Architecture of fault-tolerant computing systems".
Proc. of 5th IEEE Int. Symp. on Fault-tolerant Computing, Paris, June
1975, pp. 3-16.

E.W. Dijkstra, "The structure of the "THE" multiprogramming system".
Commun. Ass. Comput. Mach., Vol. 11, May 1968, pp. 341-346.

J.B. Goodenough, "Exception handling: issues and a proposed notation".
Commun. Ass. Comput. Mach., Vol. 18, Dec. 1975, pp.683-696.

J.J. Horning et al., "A program structure for error detection and
recovery", Lecture Notes in Computer Science 16, Springer, Berlin,
1974, pp. 177-193.

P.A. Lee, N.Ghani and K. Heron, "A recovery cache for the PDP-11",
Digest of papers, FTCS-9, Madison, June 1979.

B.H. Liskov, "The design of the Venus operating system", Commun. Ass.
Comput. Mach., Vol. 15, March 1972, pp. 1U44-149,

S.K. Shrivastava and A.A. Akinpelu, - "Fault-tolerant sequential

programming using recovery blocks". Digest of papers, FTCS-8,
Toulouse, June 1978, p. 207.

Appendix

The code which follows is written in a Pascal-like language. The procedures
which are made available to the user program P (as operations) are
distinguished by the keyword entry. To make it c¢lear to the reader which
operations are provided by the extension E1 and which by the interpreter 10,

invocation of such operations will be prefixed by "E1." and "I0."
respectively. The establishrp, discardrp and recover procedures are those

which it is assumed are automatically invoked by IO as noted in the paper.

The declarations of a number of procedures have been omitted for brevity. The
tasks performed by procedures readline, convert, put-in-cache and extract-
from-cache should be clear from their names and invocations. Procedures
initialise-cache and tidy-up-cache are merely ¢to allow for any necessary
updating of the housekeepingvars of the cache. Procedure cacheing-required
determines whether recovery data must be entered in the recovery cache,
according to whether the disc page which would have been overwritten 1is one

which represented a part of the file at the time the recovery point was
established. ’

As a further simplification, recovery in the example is only considered for a
single recovery point. The elementary modifications necessary to cope with

multiple nested recovery regions are left as an exercise for the interested
reader.

Code is presented for E2 with disjoint recovery, and then for E2 with
inclusive recovery.

DISJQINT RECQVERY IN E2

constant filemaplocation =...; "address for disc copy of filemap"
type filemapindex = (1..N);

discaddress = ...;
cacheentry = record oldpage : discaddress;
index : filemapindex
endrecord;
line = ...;

var filemap : array [filemapindex] of discaddress;
pagebuffer : array [1..M] of line;
activepageno : (0..N); "filemapindex of discpage
currently in pagebuffer"
writtento : boolean;
status : (open, closed) initially closed;
cache : record housekeepingvars : ...;
oldfilestatus : (open,closed);
region : array [1..P] of cacheentry;
endrecord;

entry procedure openfile;
begin if status = open Lhen signalerror glse
begi
I0.readdisc(filemaplocation,filemap); "read filemap into core"
activepageno:=0; writtento:=false; status:=zopen;
end;
end openfile;

entry procedure closefile;
begin if status = closed then signalerror else
begin if writtento then copybackpagebuffer;

I0.writedisc(filemaplocation,filemap); "assume written to"
status:=closed;

end;
end closefile;

entry procedure writeline(lineno:integer,linecontents:line);
var pageno : filemapindex; displacement : integer;
begin if status = closed then signalerror glse
begin convert(lineno,pageno,displacement);
getpage(pageno);
pagebuffer[displacement]:=zlinecontents;
writtento:=true;
end;
end writeline;

procedure getpage(pagenumber : filemapindex);
begin if pagenumber = activepageno then return;
Af writtento then copybackpagebuffer;
I10.readdisc(filemap[activepageno],pagebuffer);
activepageno:=pagenumber;

writtento:=false;

end getpage;

procedure copybackpagebuffer;

var newpage : discaddress;

begin if cacheing-required then "record recovery data"
begin newpage:=El.getdiscpage;
"cache old disc page address and its filemap index"
put-in-cache(filemap(index],index);
filemap[index]:=newpage; "reset filemap for new page"
end;

I0.writedisc(filemap[index],pagebuffer);

end copybackpagebuffer;

-10-

"recovery procedures - establish a recovery point,
recover, and discard a recovery point"

establishrp procedure;

begin if (status=open) & writtento then

"ensure disc copy represents current file state"
I0.writedisc(filemap[activepageno],pagebuffer);
initialise-cache;

cache.oldfilestatus:=status; "checkpoint file status"
end establishrp;

recovery procedure;
var index : filemapindex; oldpage : discaddress;
begin "reset the necessary in-core variables"
if status = closed then openfile else activepageno:=0;
for each entry in cache.region do
begin extract-from-entry(oldpage,index);
El.releasediscpage(filemap[index]); "throw new page away"
filemap[index]:=oldpage; "reset filemap"
end for loop;
if cache.oldfilestatus = closed then closefile;
tidyup-cache;
end recovery;

discardrp procedure;
var index : filemapindex; oldpage : discaddress;
begin for each entry in cache.region do
begin extract-from-entry(oldpage,index);
£1.releasediscpage(oldpage); "throw old page away"
end for loop;)
tidyup-cache;
end discardrp;

-11-

INCLUSIVE RECOVERY IN E2
"type and var declarations as before except for the cache"

type cacheentry = record oldpage : discaddress;
newpage : discaddress;

endrecord;

r ver c var cache : record housekeepingvars : ...;
region : array[1..P] of cacheentry;

endrecord;
entry procedure openfile; ... "as before"
entry procedure closefile; ... "as before"

entry procedure writeline(...); ... "as before"
entry procedure readline(...); ... "as before"
procedure getpage(...); ... "as before"

procedure copybackpagebuffer;

var newpage : discaddress;

begin if cacheing-required then "record recovery data"
begin newpage:=E1.getdiscpage;
"cache old and new disc page addresses"
put-in-cache(filemap(index],newpage);
filemap[index]:=newpage; "reset filemap"
end;

I0.writedisc(filemap{ index],pagebuffer);

end copybackpagebuffer;

establishrp procedure;
begin initialise-cache;
end establishrp;

recovery procedure;

var oldpage,newpage : discaddress;

begin for each entry in cache.region do
begin extract-from-entry(oldpage,newpage);
E1.releasediscpage(newpage); "throw new page away"
end for loop;

tidyup-cache;

end recovery;

discardrp procedure;

var oldpage,newpage : discaddress

begin for each entry in cache.region do
begin extract-from-entry(oldpage,newpage);
E1.releasediscpage(oldpage); "throw old page away"
end for loop;

tidyup-cache;

end discardrp;

-12-

v

recovery point 1

recovery
region 1

recovery point 2

recovery
region 2

{

discard recovery point 2

discard recovery point 1

v
Figure 1. Multiple Recovery Points

program
12
L1
software
interpreter
I1
LO
hardware
I0 interpreter
Figure 2. Interpretive Multilevel System

-13-

time

program program user program
E1 ..._.m E2———-L2 Jp—
LO '
program
g
Figure 3. Extended Interpreter Multilevel System
program program recovery user program
program
E1l —— L1 E2 — recovery\ L p —
data
LO
program recovery
program
I0 —_— —— recovery
data
Figure 4. Recovery Structures in an Extended Interpreter System

—14-

